CB-22 EXAMPLE CALCULATION

Part I: Calculation of tunnel effluent concentrations

• Duration of testing:

• Blank-corrected backup filter net weight:

Tare weight = 2779.8 mg
Final weight = 2851.0 mg
Blank correction = -1.37 mg
Filter net weight = 72.57 mg

*Net weight constitutes PM-10 mass collected by effluent sampler

• Cyclone flow rate = 40 cfm = 1.13267 m³/min

Average effluent PM-10 concentration:

$$\frac{72.57 \text{ mg}}{1.13267 \text{ m}^3/\text{min x}} = 0.508 \text{ mg/m}^3$$

• Blank-corrected background filter net weight:

Tare weight = 2740.7 mg
Final weight = 2756.5 mg
Blank correction = -1.37 mg
Filter net weight = 17.17 mg

*Half of net weight assumed to be PM-10 mass collected from ambient air PM-10 mass collected = 8.585 mg

- Duration of background sampling = 289 min
- Cyclone flow rate = $40 \text{ cfm} = 1.13267 \text{ m}^3/\text{min}$

Background PM-10 concentration:

$$\frac{8.585 \text{ mg}}{1.13267 \text{ m}^3/\text{min x}} = 0.026 \text{ mg/m}^3$$

Net PM-10 concentration (attributable to emissions from test area):

$$0.508 \text{ mg/m}^3 - 0.026 \text{ mg/m}^3 = 0.482 \text{ mg/m}^3$$

• Cyclone catch:

Bag tare weight = 3.6340 g Bag final weight = 3.6766 g

Bag net weight = 0.0426 g = 42.6 mg

*Sample collected in bag represents suspended particles greater than 10 µm aerodynamic diameter

Average effluent TSP concentration:

$$\frac{72.57 \text{ mg} + 42.6 \text{ mg}}{1.13267 \text{ m}^3/\text{min x}} = 0.807 \text{ mg/m}^3$$

Calculation of erosion potentials

• Average maximum Δp at tunnel centerline (CL) during test runs:

$$\begin{array}{rcl} \text{CB-22A} & = & 0.33 \text{ in. } \text{H}_2\text{O} \\ \text{CB-22B} & = & 0.36 \text{ in. } \text{H}_2\text{O} \\ \text{CB-22C} & = & 0.27 \text{ in. } \text{H}_2\text{O} \\ \text{CB-22D} & = & 0.25 \text{ in. } \text{H}_2\text{O} \\ \text{CB-22E} & = & 0.25 \text{ in. } \text{H}_2\text{O} \\ \text{CB-22F} & = & 0.23 \text{ in. } \text{H}_2\text{O} \\ \text{CB-22} & = & 0.28 \text{ in. } \text{H}_2\text{O} \end{array}$$

Factor conversion of Δp to wind speed (mph):
 Average barometric pressure = 24.8 in. Hg
 Ambient temperature = 84°F

K' =
$$10.83 \text{ x} \left(\frac{(84^{\circ}\text{F} + 459.3)}{24.8 \text{ in. Hg}} \right)^{1/2} = 50.69$$

Maximum wind speed (mph) at tunnel CL:

$$50.69 \text{ x} \quad (0.28 \text{ in. H}_2\text{O})^{1/2} = 26.8 \text{ mph}$$

- Surface roughness height for test period = 1.21 cm
- Tunnel CL height = 7.62 cm

Equivalent maximum wind speed (mph) at 10-m height:

$$\frac{26.8 \text{ mph x ln } \frac{1000 \text{ cm}}{1.21 \text{ cm}}}{\text{ln } \frac{7.62 \text{ cm}}{1.21 \text{ cm}}} = 97.8 \text{ mph}$$

Corresponding friction velocity:

$$\frac{26.8 \text{ mph x } 0.4}{\ln \frac{7.62 \text{ cm}}{1.21 \text{ cm}}} = 5.83 \text{ mph} = 260.6 \text{ cm/s}$$

• Net PM-10 mass collected:

72.57 mg –
$$\left(8.585 \text{ mg x} \frac{126 \text{ min}}{289 \text{ min}}\right)$$
 = 68.83 mg = 0.06883 g
*Background mass time-weighted to emission sampler run time

• Ratio of sampling extension area to intake nozzle area:

Sampling extension i.d. = 7.874 in
Intake nozzle i.d. = 0.88 in
Ratio = 80.08

Sampling extension area = 48.69 in²
Intake nozzle area = 0.608 in²

- Exposed test surface area dimensions = 4 ft x 6 in
- Area of ground surface sampled = $2 \text{ ft}^2 = 0.1858 \text{ m}^2$

PM-10 erosion potential/loss:

$$\frac{0.06883 \text{ g x (80.08 x 85\%)}}{6 \text{ x 0.1858 m}^2} = 4.20 \text{ g/m}^2$$

*Six test areas sampled during CB-22

*85% of the centerline wind speed is the average wind speed over the area of the sampling extension

TSP erosion potential/loss:

$$\frac{(0.06883 \text{ g} + 0.0426 \text{ g}) \times (80.08 \times 85\%)}{6 \times 0.1858 \text{ m}^2} = 6.80 \text{ g/m}^2$$

*Six test areas sampled during CB-22

*85% of the centerline wind speed is the average wind speed over the area of the sampling extension

Part II: Calculation of tunnel effluent Pu239 activity levels and concentrations

- Duration of testing = 126 min
- Blank-corrected tunnel effluent PM-10 mass = 72.57 mg
- Duration of background sampling = 289 min
- Blank-corrected tunnel inlet PM-10 mass = 8.585 mg
- Time-weighted blank-corrected tunnel inlet (background) PM-10 mass:

8.585 mg x
$$\frac{126 \text{ min}}{289 \text{ min}}$$
 = 3.74 mg

Net tunnel effluent PM-10 mass:

$$72.57 \text{ mg} - 3.74 \text{ mg} = 68.83 \text{ mg}$$

- Volume of air sampled by emission sampler:
 40 cfm x 126 min = 5040 ft³ = 142.7 m³
- Volume of air sampled by background sampler: 40 cfm x 289 min = 11560 ft³ = 327.3 m³

Net PM-10 concentration:

$$\frac{68.83 \text{ mg}}{142.7 \text{ m}^3} = 0.482 \text{ mg/m}^3$$

- Tunnel effluent Pu239 activity = 0.174 dpm
- Tunnel inlet Pu239 activity = 0.004 dpm

Tunnel effluent Pu239 concentration:

$$\frac{0.174 \text{ dpm/filter x } 0.45 \text{ pCi/dpm}}{142.7 \text{ m}^3/\text{filter}} = 0.00055 \text{ pCi/m}^3$$

Tunnel inlet Pu239 concentration:

$$\frac{0.004 \text{ dpm/filter x } 0.45 \text{ pCi/dpm}}{327.3 \text{ m}^3/\text{filter}} = 0.0000055 \text{ pCi/m}^3$$

Pu239 concentration attributed to PM-10 eroded from soil:

$$0.00055 \text{ pCi/m}^3 - 0.0000055 \text{ pCi/m}^3 = 0.0005445 \text{ pCi/m}^3$$

- Tunnel effluent >PM-10 mass = 42.6 mg
- Tunnel effluent TSP mass:

42.6 mg + 72.57 mg = 115.17 mg

- Blank-corrected tunnel inlet TSP mass = 17.17 mg
- Time-weighted blank-corrected tunnel inlet TSP mass:

$$17.17 \text{ mg x } \frac{126 \text{ min}}{289 \text{ min}} = 7.49 \text{ mg}$$

Net tunnel effluent TSP mass:

$$115.17 \text{ mg} - 7.49 \text{ mg} = 107.68 \text{ mg}$$

- Volume of air sampled by emission sampler: $40 \text{ cfm x } 126 \text{ min} = 5040 \text{ ft}^3 = 142.7 \text{ m}^3$
- Volume of air sampled by background sampler: 40 cfm x 289 min = 11560 ft³ = 327.3 m³

Net TSP concentration:

$$\frac{107.68 \text{ mg}}{142.7 \text{ m}^3} = 0.755 \text{ mg/m}^3$$

- Tunnel effluent PM-10 Pu239 activity = 0.174 dpm
- Tunnel effluent >PM-10 Pu239 activity = 1.200 pCi/g = 0.0012 pCi/mg
- Tunnel inlet TSP Pu239 activity = 0.004 dpm

Tunnel effluent >PM-10 concentration:

$$\frac{42.6 \text{ mg}}{142.7 \text{ m}^3} = 0.299 \text{ mg/m}^3$$

Tunnel effluent >PM-10 Pu239 concentration:

$$0.0012 \text{ pCi/mg} \times 0.299 \text{ mg/m}^3 = 0.00036 \text{ pCi/m}^3$$

Tunnel effluent TSP Pu239 concentration:

$$0.00036 \text{ pCi/m}^3 + 0.00055 \text{ pCi/m}^3 = 0.00091 \text{ pCi/m}^3$$

Tunnel inlet TSP Pu239 concentration:

$$\frac{0.004 \text{ dpm/filter x } 0.45 \text{ pCi/dpm}}{327.3 \text{ m}^3/\text{filter}} = 0.0000055 \text{ pCi/m}^3$$

Pu239 concentration attributed to TSP eroded from soil:

$$0.00091 \text{ pCi/m}^3 - 0.0000055 \text{ pCi/m}^3 = 0.0009045 \text{ pCi/m}^3$$

Alternative Calculation

- Duration of testing = 126 min
- Blank-corrected tunnel effluent PM-10 mass = 72.57 mg = 0.07257 g
- Duration of background sampling = 289 min
- Blank-corrected tunnel inlet TSP mass = 17.17 mg
- Blank-corrected tunnel inlet PM-10 mass = 8.585 mg
- Time-weighted blank-corrected tunnel inlet (background) PM-10 mass:

8.585 mg x
$$\frac{126 \text{ min}}{289 \text{ min}}$$
 = 3.74 mg = 0.00374 g

Net tunnel effluent PM-10 mass:

$$72.57 \text{ mg} - 3.74 \text{ mg} = 68.83 \text{ mg} = 0.06883 \text{ g}$$

- Volume of air sampled by emission sampler:
 40 cfm x 126 min = 5040 ft³ = 142.7 m³
- Volume of air sampled by background sampler:
 40 cfm x 289 min = 11560 ft³ = 327.3 m³

Net PM-10 emission concentration:

$$\frac{68.83 \text{ mg}}{142.7 \text{ m}^3} = 0.482 \text{ mg/m}^3 = 0.000482 \text{ g/m}^3$$

- Tunnel effluent Pu239 activity = 0.174 dpm
- Tunnel inlet Pu239 activity = 0.004 dpm

Tunnel effluent Pu239 activity:

$$\frac{0.174 \text{ dpm x } 0.45 \text{ pCi/dpm}}{0.07257 \text{ g}} = 1.08 \text{ pCi/g}$$

 $1.08 \text{ pCi/g} \times 0.07257 \text{ g} = 0.078 \text{ pCi}$

Tunnel inlet Pu239 activity:

$$\frac{0.004 \text{ dpm/filter x } 0.45 \text{ pCi/dpm}}{0.01717 \text{ g}} = 0.10 \text{ pCi/g}$$

 $0.10 \text{ pCi/g} \times 0.00374 \text{ g} = 0.000374 \text{ pCi}$

Net Pu239 activity:

$$\frac{0.0776 \text{ pCi}}{0.06883 \text{ g}} = 1.13 \text{ pCi/g}$$

Pu239 concentration attributed to PM-10 eroded from soil:

$$1.13 \text{ pCi/g} \times 0.000482 \text{ g/m}^3 = 0.00055 \text{ pCi/m}^3$$

- Tunnel effluent >PM-10 mass = 42.6 mg = 0.0426 g
- Tunnel effluent TSP mass:

42.6 mg + 72.57 mg = 115.17 mg

- Blank-corrected tunnel inlet TSP mass = 17.17 mg = 0.01717 g
- Time-weighted blank-corrected tunnel inlet TSP mass:

$$17.17 \text{ mg x } \frac{126 \text{ min}}{289 \text{ min}} = 7.49 \text{ mg} = 0.00749 \text{ g}$$

Net tunnel effluent TSP mass:

$$115.17 \text{ mg} - 7.49 \text{ mg} = 107.68 \text{ mg} = 0.10768 \text{ g}$$

- Volume of air sampled by emission sampler:
 40 cfm x 126 min = 5040 ft³ = 142.7 m³
- Volume of air sampled by background sampler:
 40 cfm x 289 min = 11560 ft³ = 327.3 m³

Net TSP concentration:

$$\frac{107.68 \text{ mg}}{142.7 \text{ m}^3} = 0.755 \text{ mg/m}^3 = 0.000755 \text{ g/m}^3$$

- Tunnel effluent PM-10 Pu239 activity = 0.174 dpm
- Tunnel effluent >PM-10 Pu239 activity = 1.200 pCi/g

Tunnel effluent TSP Pu239 activity:

$$(1.200 \text{ pCi/g} \times 0.0426 \text{ g}) + 0.078 \text{ pCi} = 0.129 \text{ pCi}$$

Tunnel inlet TSP Pu239 activity = 0.004 dpm

Tunnel inlet TSP Pu239 activity:

$$\frac{0.004 \text{ dpm/filter x } 0.45 \text{ pCi/dpm}}{0.01717 \text{ g}} = 0.10 \text{ pCi/g}$$

$$0.10 \text{ pCi/g} \times 0.00749 \text{ g} = 0.000749 \text{ pCi}$$

Net TSP Pu239 activity:

$$0.129 \text{ pCi} - 0.000749 \text{ pCi} = 0.128 \text{ pCi}$$

$$\frac{0.128 \text{ pCi}}{0.10768 \text{ g}} = 1.189 \text{ pCi/g}$$

Pu239 concentration attributed to TSP eroded from soil:

$$1.189 \text{ pCi/g} \times 0.000755 \text{ g/m}^3 = 0.00090 \text{ pCi/m}^3$$